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Abstract

In this research, the free vibration analysis of simply supported rotating cylindrical shells with circumferential stiffeners,

i.e. rings with non-uniform stiffeners eccentricity and non-uniform stiffeners spacing distribution is investigated. Ritz

method is applied while stiffeners are treated as discrete elements. In strain energy formulation, by adopting Sander’s

theorem, stretching and bending characteristics of shells are considered. Also stretching, bending and wrapping effects of

stiffeners are investigated. The translational inertia in three directions for shell and stiffeners, and rotary inertia for

stiffeners are considered. The effects of initial hoop tension, centrifugal and Coriolis forces due to the rotation of shell are

studied. The polynomial functions are used for Ritz functions. Natural frequency results for rings with uniform spacing

and constant eccentricity have been compared with analytical and experimental results of other researchers, which showed

good agreement. Fortunately, the agreements of the presented analytical results with the experimental values are better

than the analytical values. At constant total mass of stiffeners, the effects of non-uniform eccentricity distribution and non-

uniform rings spacing distribution (separately and simultaneously) on natural frequencies are investigated. Moreover, the

influence of rotating speed on natural frequencies for the so-called non-uniform stiffeners distribution is studied.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Ring stiffened cylindrical shells are applied in many structures such as pressure vessels, submarine hulls,
aircraft, launch vehicles and offshore drilling rigs. The knowledge of these structures characteristics is
necessary to determine their structural integrity and fatigue life. The natural frequencies of vibrations are of
special interest to aircraft and launch vehicle designers because of increasing use of sensitive electronic
instrumentation and on-board computers and gyroscopes, which require vibration isolation from the main
structure.

In the considerable literature on this subject, there are two main types of analysis, depending upon whether
the stiffening rings are treated by averaging their properties over the surface of the shell or by considering
them as discrete elements. When ring stiffeners of equal strength are closely and evenly spaced, the stiffened
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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shell can be modeled as an equivalent orthotropic shell. This is also called smearing method. However, as
the stiffener spacing increases or the wavelength of vibration becomes smaller than the stiffener spacing, the
determination of dynamic characteristics of stiffened shell is not accurate. Thus, for a more general model, the
ring stiffeners have to be treated as discrete elements. When modeled in this respect, it is advantageous to use
non-uniform eccentricity, unequally spaced and different materials for ring stiffeners.

The free vibration of stiffened cylindrical shells has been investigated since 1950s by a number of
researchers. Hopmann [1] investigated the free vibration of orthogonally stiffened cylindrical shells with
simply supported ends, analytically and experimentally. In this study smearing method for stiffeners was used
in the analytical investigation. Mikulas and McElman [2] investigated the free vibration of eccentrically
stiffened simply supported cylindrical shells by averaging the stiffeners properties over the surface of the shells
and found that the eccentricity could have significant effects on natural frequencies. Egle and Sewall [3]
extended this study with stiffeners treated as discrete elements. The effects of in-plane and rotary inertia on the
natural frequencies of eccentrically stiffened shells were examined by Parthan and Johns [4]. A theoretical and
experimental investigation of the vibration of axially loaded stiffened cylindrical shells was provided by Rosen
and Singer [5] using Donell and Flugge theories. Mustafa and Ali [6] presented an energy method for free
vibration analysis of stiffened cylindrical shells. The analysis took into account the flexure and extension of the
shell and the flexure, extension and torsion of the stiffeners. Lim and Liew [7] presented a flexural free
vibration analysis of shallow cylindrical shells for different boundary conditions combinations. In this study,
Ritz method was used which the in-plane and transverse displacements assumed in the form of orthogonal
polynomials. Liew and Lim [8,9] developed a continuum Ritz model for twisted plate vibration and variable
thickness shallow cylindrical shells vibration, using aforementioned polynomials functions for in-plane and
transverse displacements. Swaddiwudhipong et al. [10] presented the free vibrations of cylindrical shells with
rigid intermediate supports utilizing Ritz method. A special polynomial unified set of Ritz function was used
to span the displacement fields of various types and combinations of end boundary conditions. Wang et al.
[11] extended the Ritz method for solving the free vibration problem of cylindrical shells with varying ring
stiffener distributions.

The behavior of rotating cylindrical shells was first investigated by Bryan [12] and it was in this work
that traveling modes were first elucidated. The effects of Coriolis and centrifugal forces in rotating
shell structures have been examined by DiTaranto and Lessen [13] and Huang and Soedel [14]. Zhao et al.
[15] presented the free vibration analysis of simply supported rotating cross-ply laminated cylindrical shells
with axial and circumferential stiffeners, using an energy approach. The effects of these stiffeners were
evaluated via two methods: stiffeners treated as discrete elements; and the properties of the stiffeners were
averaged over the shell surface by smearing method. Liew et al. [16] proposed a meshfree approach—the
harmonic reproducing kernel particle method for the free vibration analysis of rotating cylindrical shells.
The effects of centrifugal and Coriolis forces as well as the initial hoop tension due to rotation are all taken
into account.

This paper extends the method used by Lim and Liew [7] and Wang et al. [11] for free vibration analysis of
rotating ring stiffened cylindrical shells with non-uniform stiffeners distribution. They investigated the effects
of non-uniform eccentricity distribution and non-uniform rings spacing distribution separately, on natural
frequencies of non-rotating ring stiffened shell for a few cases of non-uniformity. However, the present
research contributes the above effects both separately and simultaneously for a wide range of non-uniformity
of rotating ring stiffened cylindrical shells. At constant total mass of stiffeners, the effects of non-uniformity
and rotating speed of either internally or externally ring stiffened cylindrical shell on natural frequencies are
investigated. More attention is paid to fundamental and beam mode frequencies. Furthermore, bifurcation of
natural frequencies due to rotation speed and Coriolis acceleration is investigated. In the case of uniform
stiffeners eccentricity and equal stiffeners spacing, present results have been compared with experimental and
analytical results of other researchers.

Although, the free vibration problem of stiffened shell can be solved by using popular commercial software,
but the present analytical method investigated the effects of non-uniform stiffeners eccentricity distribution
and non-uniform stiffeners spacing distribution on dynamic characteristics of rotating stiffened cylindrical
shells, simultaneously. Moreover, the present method is suitable for optimization problem of non-uniformly
stiffened cylindrical shells with various boundary conditions combinations.
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2. Theoretical formulation

The cylindrical shell as shown in Fig. 1 is considered to be thin with a uniform thickness h, radius R, length
L, mass density r, modulus of elasticity E, Poisson’s ratio n shear modulus G ¼ E=2ð1þ nÞ and rotation speed
$. The shell is circumferentially stiffened by N number of rings, which may be placed internally or externally.
The kth ring stiffener has a rectangular cross section of constant width brk and depth drk, and is located at the
distance akL from one end of the shell. The rings spacing and rings depth may be varied along the length of
the shell. The ring-stiffeners may be constructed from different materials from one another and also from the
parent shell material. The kth stiffener properties are defined as mass density rrk, modulus of elasticity Erk,
Poisson’s ratio nrk and shear modulus Grk.
2.1. Shell energy

Based on Sander’s [17] thin shell theory, the strain energy of stretching and bending of the aforementioned
cylindrical shell without stiffeners is expressed as:
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Fig. 1. A ring stiffened cylindrical shell with non-uniform stiffeners distribution.
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where u, v, w are displacements in the longitudinal, tangential and radial directions, respectively, x, y are
longitudinal and circumferential coordinates respectively, as shown in Fig. 1.

The initial hoop tension due to the centrifugal force is defined as

Ny ¼ rhR2$2 (2)

and the strain energy of the shell due to the hoop tension is:

Uh ¼
1

2

Z L

0

Z 2p

0

Ny
1

R2

qu

qy

� �2

þ
1

R2

qv

qy
� w

� �2

þ
1

R2

qw

qy
þ v

� �2
( )

R dy dx. (3)

Neglecting the effect of rotary inertia since the shell under consideration is thin; the kinetic energy of a
rotating cylindrical shell without stiffeners is expressed as
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2.2. Ring stiffener energy

In this analysis, geometric characteristics and materials of the rings may be different from one another. Also
rings spacing and their eccentricity can have non-uniform distributions.

The strain energy of the kth ring stiffener with the effects of stretching, biaxial bending and wrapping is
given by
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where Izrk, Ixrk are the second moments of areas of the kth ring stiffener about the x and z axes, Ark is the
cross-sectional area and Jrk is torsional rigidity, which are determined by
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and erk is the eccentricity of the kth ring stiffener as follows:

erk ¼ �
hþ drk

2
, (7)

where the sign (+) represents external stiffening and sign (�) is used for internal stiffening.
The strain energy of the kth ring stiffener due to hoop tension is taken to be
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where initial hoop tension of the kth ring stiffener is defined as

Ny ¼ rrkðRþ erkÞ
2$2. (9)
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The kinetic energy of the kth rotating ring stiffener with the effects of triaxial translational inertia and
rotary inertia about x and z axes is given by
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From geometrical considerations, the relationships between the displacements ðurk; vrk;wrkÞ of
the kth stiffener and the displacements ðu; v;wÞ of the shell at the position of the stiffener are
given by:
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Substituting Eqs. (6), (7), (11) into Eqs. (5), (8), (10), the ring stiffener energy can be written in the form of
shell middle surface displacement.

Therefore, the energy functional of ring stiffened cylindrical shell can be written as
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The following functions are adopted to separate the spatial variable x, y and the time variable t
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where n is the number of circumferential waves and o is circular frequency of vibration.
For generality and convenience, the following non-dimensional terms are defined:
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Using Eqs. (13) and (14), the non-dimensional total energy functional may be expressed as
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where
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2.3. Geometric boundary conditions

For simply supported cylindrical shells, four kinds of boundary conditions can be designated as follows:

S1 : w ¼ v ¼ 0; S2 : w ¼ 0; S3 : w ¼ u ¼ 0; S4 : w ¼ v ¼ u ¼ 0. (18)

2.4. Ritz functions

In view of satisfying the foregoing geometric boundary conditions, the proposed Ritz functions for
approximating the displacements are:
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where the powers of P are as shown in Table 1. The superscripts of P, i.e. 0 and 1, denote the cylindrical shell
ends at x ¼ 0 and 1, respectively.

These forms of Ritz functions allow easy exact differentiation and integration. Also, by increasing the
number of polynomials terms NS, better convergence to exact solution can be achieved.
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Table 1

Powers of P for Ritz functions

Boundry condition S1 S2 S3 S4

Pu 0 0 1 1

Pv 1 0 0 1

Pw 1 1 1 1

A.A. Jafari, M. Bagheri / Journal of Sound and Vibration 296 (2006) 353–367 359
2.5. Equations of motion

Applying the Rayleigh–Ritz method (minimization of non-dimensional energy functional with respect to
Ritz functions coefficients), the equations of motion are derived as follows:
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¼ 0

9>>>>>>>>=
>>>>>>>>;
; i ¼ 1; 2; . . . ;NS. (20)

Substituting Eq. (19) into Eq. (15) and then into Eq. (20) yields the following eigenvalue equation:
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where [K] and [M] are stiffness and mass matrices of cylindrical shell, respectively. Also, [Krk] and [Mrk] are
corresponding matrices of the kth ring stiffener, fCg ¼ fp1; . . . ; pNS; q1; . . . ; qNS; r1; . . . ; rNSg

T is the column
vector of Ritz coefficients, O2 ¼ ð1� n2ÞrR2o2=E is a non-dimensional frequency parameter, l2 ¼ ð1�
n2ÞrR2$2=E is a non-dimensional shell rotation speed parameter. Matrices with subscripts l, l2 are the effect
of stiffened shell rotation speed.
3. Results and discussions

3.1. Cylindrical shells with uniform ring spacing and eccentricity

Rayleigh–Ritz method (Eq. (21)) with proposed displacement functions (Eq. (19)) is used to determine the
dynamic characteristics of two simply supported (S1–S1) ring stiffened cylindrical shells. The geometrical
dimensions and material properties of these shells are given in Table 2. The M1 model is a non-rotating
externally ring stiffened cylindrical shell with evenly spaced and uniform stiffeners eccentricity.

Table 3 shows the comparison between predicted analytical results of natural frequencies and the
experimental results of Hoppmann [1] and the analytical results of Mustafa and Ali [6] for various modes
of vibrations for M1 model. It could be observed that using polynomial terms of NS ¼ 8 for each
displacement function is adequate for converged results. It should be noted that the results are in good
agreement. Moreover, the agreements of the presented analytical results with the experimental values of
Hoppmann are better than the analytical values of Mustafa and Ali. Therefore, applying this method with the
proposed Ritz functions has adequate accuracy to determine the natural frequencies of ring stiffened
cylindrical shells.
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Table 3

Convergence and comparison of natural frequencies with other references for model M1

Mode number Present analysis results Natural frequencies (Hz) Experimental [1] Discrepancya (%) Analytical [6]

m n Number of polynomials: NS

4 6 8 10

1 1 1199.85 1199.58 1199.58 1199.58 — — 1204

2 1564.52 1564.48 1564.48 1564.47 1530 2.2 1587

3 4400.6 4388.49 4387.68 4387.59 4080 7.0 4462

4 8405.96 8381.31 8378.1 8377.75 — — 8559

5 13556.7 13510.3 13500.4 13490.7 — — 13780

2 1 3790.78 3499.62 3493.61 3493.59 — — 3498

2 2365.13 2118.1 2113.87 2113.84 2040 3.5 2129

3 4444.75 4400.6 4400.59 4400.58 4090 7.0 4437

4 8449.92 8393.05 8392.89 8392.63 — — 8482

5 13568.8 13566.7 13509.8 13508.9 — — 13695

3 1 6543.24 5868.62 5840.25 5839.89 — — 5844

2 4111.98 3409.15 3378.59 3378.17 3200 5.2 3386

3 4935.99 4607.88 4596.06 4595.79 4520 1.6 4627

4 8496.7 8449.94 8449.93 8449.89 7520 11.0 8438

5 13624.4 13624.3 13567.2 13555.4 — — 13595

aDiscrepancy between the presented analytical results and the experimental results [1].

Table 2

Geometrical and material properties of two stiffened shells

Characteristics Physical dimensions and values

M1 model M2 model

Number of rings N 19 13

Shell radius R (m) 0.049759 0.203

Shell thickness h (m) 0.001651 0.00204

Shell length L (m) 0.3945 0.813

Ring depth dr, d0 (m) 0.005334 0.006

Ring width br (m) 0.003175 0.004

Modulus of elasticity E (GPa) 68.95 207

Mass density r (kg/m3) 2762 7430

Poisson’s ratio n 0.3 0.3

Stiffening type External Internal (external)

A.A. Jafari, M. Bagheri / Journal of Sound and Vibration 296 (2006) 353–367360
3.2. Cylindrical shells with non-uniform ring spacing and eccentricity

Here, the effects of non-uniform rings spacing and non-uniform stiffeners eccentricity distribution are
considered, separately and simultaneously. The main purpose of this study is to answer whether it is possible
to obtain higher natural frequencies at non-uniform stiffeners distribution with constant stiffeners mass. To
this end, M2 model with uniform stiffener distribution is considered, which its properties are shown in Table 2.
Uniform distribution is the case of evenly spaced and equal depth for all stiffeners. Some cases of non-uniform
rings spacing and non-uniform eccentricity distributions are shown in Fig. 2. The minimum depth of stiffeners
is located at the two ends of the shell and the maximum depth of stiffeners is located at the midsection of the
shell length. The maximum and minimum depth of stiffeners is determined, such that the mass and volume of
stiffeners remain unchanged with respect to uniform distribution. Assuming the same width for all stiffeners,
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Fig. 2. Non-uniform rings spacing and non-uniform eccentricity distribution.
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the volume of rings for externally stiffened shell can be written as:

Vuniform ¼ 2pN Rþ
hþ d0

2

� �
bd0, (22a)
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where d1 represents the minimum stiffeners depth and d0 is the stiffeners depth in uniform distribution.
Equating the volume of stiffeners in uniform and non-uniform distributions, a second-order equation

corresponding to D0 can be obtained as follows:
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where D0 denotes the difference between the maximum and minimum depth of non-uniformly stiffeners
distribution.

For internally stiffened shell, the corresponding equation can be written as

�
1

N

D0

R� d1 � ðh=2Þ

� �2XN

k¼1

c0r2k þ
2

N

D0

R� d1 � ðh=2Þ

� �XN

k¼1

c0rk

�
2ðR� ðh=2ÞÞðd0 � d1Þ

ðR� d1 � ðh=2ÞÞ
2
þ

ðd2
0 � d2

1Þ

ðR� d1 � ðh=2ÞÞ
2
¼ 0. ð24Þ

Selecting a value for d1, the value of D0 can be determined by solving Eq. (23) or Eq. (24). The depth of each
stiffener drk would be obtained as follows:

c0rk ¼
d 0rk

D0
¼
ð2akÞ

g kpN=2;

ð2ð1� akÞÞ
g k4N=2;

(
(25)
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ak ¼
k

N þ 1

� �b

; k ¼ 1 . . .N, (26)

drk ¼ c0rk �D0 þ d1, (27)

where in Fig. 2 and in Eqs. (25)–(27), g and b represent the order of variations of eccentricity distribution
function and rings spacing distribution function along the shell length, respectively.

For b41, the stiffeners concentration at the two ends of the shell is more than its middle. It means that the
rings spacing in the middle section of the shell is greater than the rings spacing at the two ends. On the other
hand, for bo1, the ring stiffeners are compressed in the midsection of the shell length. In this study, b varies
from 0.1 to 2. The b ¼ 1 denotes the case of evenly spaced ring stiffeners along the shell length. Also, g varies
from 0 to 2. The case of g ¼ 0 and b ¼ 1 denotes a uniform distribution of ring stiffeners along the shell length
like the two models M1 and M2, as shown in Table 2.

Fig. 3(a–d) shows the variations of the natural frequencies of vibration with respect to depth ratio ðd1=d0Þ,
corresponding to circumferential waves n ¼ 1–5 and longitudinal wave m ¼ 1, for different values of g. Here,
the rings spacing is uniform and only the effect of non-uniform eccentricity is considered.

It should be noted that, reduction of the depth ratio increases mass and stiffness in the middle section of the
shell and decreases them at the two ends of the shell. Since the stiffness increase is more than the mass increase,
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Fig. 3. Natural frequencies variations versus depth ratio for equal rings spacing ðb ¼ 1Þ and non-uniform eccentricity distribution: (a)

g ¼ 0.5; (b) g ¼ 1; (c) g ¼ 1.5; (d) g ¼ 2, –J– n ¼ 1, –X– n ¼ 2, –B– n ¼ 3, –&– n ¼ 4, –n– n ¼ 5, — internal ring, - - - external ring.
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the natural frequencies of various circumferential modes (except beam mode frequency n ¼ 1) increase. On the
other hand, for higher depth ratios, a reduction in natural frequencies is observed for these modes.

Inversely, an increase of the depth ratio leads to higher beam mode frequency. In the beam mode, the shape
of stiffeners remain circular and the strain energy of stiffeners dose not affect the total energy of the system
and only the kinetic energy of stiffeners contributes in the total energy. Therefore, the increase of the depth
ratio decrease the mass in the midsection of the shell, reduces the kinetic energy, and raises the beam mode
natural frequency.

For g41, some natural frequency curve crossing is observed for higher depth ratios. Moreover, the
fundamental frequency mode switches from one to another mode, and a sudden reduction in the fundamental
frequency is observed. This case occurs in Fig. 3(c,d) which the fundamental frequency mode switches from
n ¼ 2 to 3. In lower depth ratios, the fundamental frequency corresponds to n ¼ 2. By increasing depth ratio,
frequency curve crossing is occurred and the fundamental frequency mode switches to n ¼ 3 and its value
decreases suddenly. Therefore, at constant stiffeners mass, higher natural frequencies can be obtained by
selecting lower values for d1=d0.

Moreover, internal stiffening is better than the external stiffening for increasing the natural frequencies of
various modes of vibrations. Mathematically, the difference between sign of external and internal stiffening
(Eq. (7)) affects the natural frequencies, significantly. Physically, at constant stiffeners mass, the eccentricity
value and stiffness of internal rings is more than the external rings.

Fig. 4(a,b) shows fundamental frequency variations versus d1=d0, corresponding to different values of g, for
two types of internal and external stiffening. In this figure, stiffeners are evenly spaced along the shell length.
The maximum fundamental frequency occurs at the smallest value of d1=d0. It should be mentioned that, for
g41, the fundamental frequency circumferential mode switches from one mode to another. This could be seen
with an abrupt slope variation and a sudden reduction in frequency.

Fig. 5(a,b) shows fundamental frequency variations versus b, corresponding to different values of g, for two
types of internal and external stiffening. In this figure, d1=d0 is equal to 0.1 and the effects of non-uniform
rings eccentricity distribution and non-uniform rings spacing distribution are considered simultaneously. In
this case, the maximum fundamental frequency is obtained for g ¼ 2 and b ¼ 2. This states that the best
combination for increasing the fundamental frequency is to use a few thick rings at the midsection of the shell
and to put the other rings at the two ends of the shell with more concentration at the two ends.

Fig. 6(a,b) shows these results for beam mode natural frequency variations. For beam mode, frequency
variation is different from the aforementioned cases. As b increases, beam mode frequency rises and the
maximum frequency is obtained at g ¼ 0 and b ¼ 2.
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It can be concluded that if the fundamental frequency occurs in the beam mode, selection of g ¼ 0 and b ¼ 2
is the best combination to raise the frequency; otherwise, g ¼ 2 and b ¼ 2 are preferred. Also, internal
stiffening is better than the external stiffening to raise the fundamental frequency, as can be seen in these
figures.

3.3. Rotating cylindrical shells with non-uniform ring spacing and eccentricity

At first, the effect of rotating speed on natural frequencies of un-stiffened cylindrical shells is considered.
The comparison of the present results with the analytical results [16] is shown in Table 4. The agreements of
results are good which the maximum observed discrepancy is less than 9%. It should be noted that the
fundamental frequency occurs at m ¼ 1 and n ¼ 5.

Variations of fundamental frequency with the rotation speed ($) of the internally ring stiffened cylindrical
shell (M2 model), for different values of g and b are shown in Fig. 7(a–d). It can be observed that, the
frequencies split into two branches due to rotation. It should be noted that one branch (the lower) is, in fact,
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Table 4

Comparison of frequency parameter for un-stiffened rotating cylindrical shell (L/R ¼ 5, h/R ¼ 0.002, n ¼ 0.3, $ ¼ 10 rad/s)

Mode number Frequency parameter (O) Present analysis Frequency parameter Ref. [16] Discrepancy %

m n Backward wave Forward wave Backward wave Forward wave Backward wave Forward wave

1 1 0.1867 0.186 0.1864 0.185 0.16 0.53

2 0.0762 0.0756 0.0773 0.0742 �1.44 1.85

3 0.0384 0.038 0.0394 0.0374 �2.6 1.58

4 0.0241 0.0237 0.0255 0.024 �5.8 �1.26

5 0.0203 0.02 0.022 0.0215 �8.29 �7.5

6 0.0241 0.0239 0.0262 0.0248 �8.71 �3.75

7 0.0298 0.0294 0.0321 0.0316 �7.72 �7.48

8 0.037 0.0368 0.0397 0.0394 �7.29 �7.06

2 1 0.4598 0.4591 0.4607 0.4605 �0.2 �0.3

2 0.2407 0.2401 0.24 0.2397 0.29 0.16

3 0.135 0.1346 0.1343 0.1341 0.52 0.37

4 0.0839 0.0835 0.0834 0.0832 0.59 0.36

5 0.0577 0.0574 0.058 0.0578 �0.52 �0.69

6 0.0449 0.0447 0.0465 0.046 �3.5 �2.9

7 0.0411 0.0409 0.0436 0.0434 �6 �6.11

8 0.0437 0.0435 0.0464 0.0462 �6.17 �6.2
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comprised of negative frequencies based on Eq. (21). The figure shows only the absolute values. One of these
two branches corresponds to the forward modes and other to the backward modes. Increase of the rotation
speed raises the backward wave fundamental frequency in quadratic form for all values of g and b. On the
other hand, the forward wave fundamental frequency decrease with the increase of rotation speed. For the
present shell model, the maximum fundamental frequency is obtained at g and b values of 2.

Fig. 8(a,b) shows the variation of natural frequencies with the rotation speed of aforementioned stiffened
cylindrical shell, for two cases of non-uniform stiffeners distribution corresponding to m ¼ 1 and n ¼ 2, 3. The
bifurcation of natural frequencies due to rotation speed and Coriolis accelerations can be observed.
4. Conclusions

The free vibration analysis of the ring stiffened simply supported rotating cylindrical shells has been investigated
via Ritz method by treating the stiffeners as discrete elements. The eigenvalue equation results have been validated
by comparing with the results of the well-known natural frequency studies for non-rotating cylindrical shells with
uniform ring stiffeners distribution. Some new natural frequency results for various orders of eccentricity
distribution function and rings spacing distribution function have been presented. At constant stiffeners mass,
various distributions of ring stiffeners results show that to increase the fundamental frequency, if this occur in
beam mode, it is better to use g ¼ 0 and b ¼ 2; otherwise, it is better to use g ¼ 2 and b ¼ 2. Moreover, the non-
uniform stiffeners distribution significantly affects the dynamic characteristics of stiffened shell. Some natural
frequency curves crossing with each other and sudden decrement in fundamental frequency can be explained by the
effects of stiffeners distribution. Also, internal stiffening is better than the external stiffening to raise the natural
frequencies. Moreover, the effect of rotating speed on fundamental frequency of internally ring stiffened cylindrical
shells for various distributions has been investigated. The results show that an increase in the rotation speed of the
shell leads to an increase in natural frequencies in quadratic form. Furthermore, bifurcation of natural frequencies
due to rotation speed and Coriolis acceleration is investigated.

At constant stiffeners mass, selection of the best distribution parameters values can increase natural
frequencies significantly. Therefore, it is important to study the optimal distribution of ring stiffeners for
further enhancement of natural frequencies.
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